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Abstract. We examine the role of spin twists in the formation of domain walls, often called stripes, by focus-
ing on the spin textures found in the cluster spin glass phases of La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6.
To this end, we derive improved analytic expressions for the spin distortions produced by a frustrating
bond, both near the core region of the bond and in the far field, and then derive an improved expression
for interaction energies between such bonds. We critique our analytical theory by comparison to numerical
solutions of this problem and find excellent agreement. By looking at collections of small numbers of such
bonds localized in some region of a lattice, we demonstrate the stability of small “clusters” of spins, each
cluster having its own orientation of its antiferromagnetic order parameter. Then, we display a domain
wall corresponding to spin twists between clusters of locally ordered spins showing how spin twists can
serve as a mechanism for stripe formation. Since the charges are localized in this model, we emphasize that
these domain walls are produced in a situation for which no kinetic energy is present in the problem.

PACS. 75.50.Lk Spin glasses and other random magnets – 74.72.-h High-Tc compounds

1 Introduction

The now frequent experimental observations of spin
and/or charge modulations in the cuprate superconduc-
tors and related doped transition metal oxides [1] was
predicted by the “frustrated phase separation” phe-
nomenology of Emery and Kivelson. Their theoretical con-
siderations [2] involved the assertion that a doped Mott
insulator phase separates as a consequence of the compe-
tition between the kinetic energy of mobile holes and the
magnetic energies of an antiferromagnetic (AFM) phase
with long-range correlations. While it seems unlikely that
this scenario is correct in the strong correlation limit [3],
when one adds the Coulomb interaction into this prob-
lem Emery and Kivelson argued that macroscopic phase
separation became “frustrated”, and the resulting anoma-
lous normal state possessed low-energy fluctuations corre-
sponding to stripes, or domain walls [4]. To connote that
these entities correspond to metallic stripes, it is now com-
mon to refer to these structures as “rivers of charge” [5].

Recent neutron scattering studies [6] of the single-
layer La2−xSrxCuO4 (LSCO) system have revealed that
(at least in experimental results to date) an elastic mag-
netic response associated with static stripe-like correla-
tions are only found in (i) low x systems (x . 0.06) at low
temperatures such that the transport is that of a doped
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semiconductor [7], and (ii) in the famous x ≈ 1/8 system.
One could interpret both the strongly disordered, low tem-
perature results, and the x ≈ 1/8 data, as evidence that
pinning effects are necessary, either from disorder or com-
mensurability interactions, to produce static stripes. Such
arguments are consistent with the successful approach of
Tranquada and coworkers in producing static stripes that
could then be observed in scattering experiments in a va-
riety of systems [1].

The low x, low temperature region of the LSCO phase
diagram in which the static magnetic stripe correlations
are found corresponds to the spin-glass phase of LSCO.
Early magnetic resonance work on this system [8] sug-
gested that it is appropriate to think of this phase as
a cluster spin glass, so named because small clusters of
spins achieve their own short-range AFM correlations, but
the cluster-cluster ordering is spin-glass like. A numerical
simulation of this phase, coupled with new crystals and
new susceptibility data, lent support to this characteriza-
tion [9].

In the latter paper [9], one conundrum associated with
the mechanism behind the formation of the cluster spin
glass phase was pointed out, and goes as follows: The
frustrated phase separation phenomenology claims that
support for such physics is found in the existence of the
cluster spin glass phase [4]. However, detailed analysis of
the transport in this region of the LSCO phase diagram
concludes that the transport is similar to that of a doped
semiconductor [7]. Thus, at least in the low-temperature
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cluster spin-glass phase the competition between kinetic
and magnetic energies does not exist in the form proposed
originally by Emery and Kivelson, and the question can
then be asked, does the absence of the holes’ kinetic en-
ergy from extended states not eviscerate the frustrated
phase separation phenomenology as a viable mechanism
associated with the formation of the cluster spin glass
phase? Put another way, the numerical simulations of ref-
erence [9] that found evidence for the character of the
spin-glass phase being like that of a cluster spin glass pro-
duced this spin texture with zero kinetic energy, and thus
is the kinetic energy a necessary ingredient in the forma-
tion of stripe phases [10]?

This question becomes more important in view of re-
cent experiments of Julien et al. [11]. These NMR/NQR
results demonstrated the existence of a so-called charge
glass at higher temperatures, followed by the appearance
of the superconducting phase at lower temperatures, fol-
lowed by the cluster spin glass phase at the lowest temper-
atures. The frustrated phase separation phenomenology
predicts this sequence of charge glass/cluster spin glass
phases, and thus unlike the above arguments, suggests
that the cluster spin glass is stabilized by the pinning of
the charge stripes by defects, followed by the subsequent
freezing of the spin degrees of freedom within clusters de-
fined by the pinned stripes of the charge glass phase. Un-
fortunately, again, the transport of this system at low tem-
peratures is insulating (for, say T < 75 K), so in the spin
glass phase there are no rivers of charge which could “carve
out” the domain walls of the cluster spin glass phase!

In this manuscript we present new results that for-
malize the claim that via quenched disorder from the Sr
impurities one can produce the topology of pinned stripes
without any kinetic energy. To this end, we provide an
improved derivation of the spin distortion pattern pro-
duced by such quenched disorder (which frustrates the
background AFM order), and then demonstrate that this
improved theory successfully predicts the stability of local-
ized clusters of AFM correlated spins produced in a situa-
tion with zero kinetic energy. (The theoretical problem of
frustrating bonds in a background magnetic system has
been studied by many previous authors, beginning with
Villain [12], and then many others — see the citations
given in the theory section of this paper. We are refining
these previous attempts to converge to a reliable analyt-
ical theory, and are not “inventing” a new theory.) Con-
sequently, in our case, the origin of the stripes associated
with the domain walls comes from the spin twists between
the clusters, the clusters themselves having been produced
by spin twists of the spin texture as the background spins
attempt to accommodate the frustrating magnetic interac-
tions produced by the quenched disorder. A well known ex-
trapolation to higher temperatures [13] then implies that
the qualitatively identical spin twists generated by mobile
carriers must be part of the mechanism associated with
the formation of stripes.

We wish to make clear that our paper does not claim to
be the first to propose that magnetic interactions in gen-
eral, and spin twists in particular, are important in the

formation of stripes. Firstly, the work of Salem and one of
us [14] investigated the problem of frustrating FM bonds
whose locations could be chosen such that the ground-
state energy was minimized. It was found that when
quantum fluctuations were included, if the magnitude of
the frustrating interaction was smaller than that of the
background majority spins, periodic stripes of frustrating
bonds were the ground state configuration. (So, in these
ground states, again there is no kinetic energy, but stripe
phases are indeed encountered.) Secondly, when the frus-
trating bonds cannot chose their (static) positions but are
fixed by the Sr impurity ions, the numerical simulations
(mentioned above) of reference [9] suggested the presence
of domain walls between the clusters of the cluster spin-
glass phase. More recently, work of Stojkovic and cowork-
ers [15] examined a version of the mobile hole problem
by implementing a purely magnetic model that included
the long-ranged spin twists produced by mobile holes (as
well as the frustrating Coulombic energy between the car-
riers) and found many of the magnetic structures encoun-
tered in [14], including stripe phases. Lastly, White and
Scalapino, who find evidence for stripe structures in the
t–J model for mobile holes [3], note that the charge and
spin distributions of striped structures attempt to accom-
modate the frustration (read: spin twists) on the magnetic
background produced by the mobile holes [16].

Looking at the totality of the evidence in this and the
above-mentioned papers we believe that one can make a
strong case that there is a similar mechanism at work in
the formation of stripes in all of these situations, and that
this mechanism is spin twists.

Our paper is organized as follows. In the next section
we present a detailed theoretical analysis of the effects of
quenched disorder on the spin texture in systems such as
weakly doped LSCO, producing a reliable analytical the-
ory of the spin distortions both near the frustrating bond
and in the far field. We use this distortion field to produce
an accurate interaction functional between pairs of such
bonds, which we then use to demonstrate the stability of
such clusters in the cluster spins glass phase. In particular,
this leads to a clear identification of the local AFM order
parameter of each cluster. Finally, we show the resulting
spin texture between two such clusters, and demonstrate
how (local) stripe configurations can be stabilized in the
cluster spin-glass phase.

2 Core solution and energies of the single
bond problem

2.1 Hamiltonian and definitions

We consider the familiar model of magnetism in the CuO
planes of the high Tc cuprates in which the copper ions
and oxygen holes are treated as a lattice of spins governed
by a Heisenberg Hamiltonian

H = −
∑
〈ij〉

JijSi · Sj (1)
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where 〈ij〉 denotes a summation over near neighbour pairs
of spins and the Jij are the exchange interaction integrals.
For an undoped lattice these spins are the Cu spins and
the exchange integrals are equal and negative; the ground
state corresponds to an AFM ordered state on a square lat-
tice. In what follows we simplify our considerations by us-
ing classical spins, implying that only the transverse (viz.,
moment reorientation) and not the longitudinal (viz., mo-
ment magnitude) spin-spin interactions are included [13].

The simplest model of the effects of doping in weakly
doped cuprates at low temperatures was proposed by
Emery, and corresponds to localizing the holes on oxy-
gen sites and replacing the AFM Cu-Cu superexchange
for this occupied bond with an effective FM exchange.
The phase diagram of the multiply doped version of this
model was produced by Aharony et al. [17]. Although de-
tailed transport analysis of this part of the LaSrCuO phase
diagram [7] has shown that a slightly different model [18,9]
of the localized dopants is required for a direct compari-
son to experiments, the FM bond model (which we shall
refer to as the frustrating bond model) is more amenable
to analytical study, for reasons that we shall elaborate on
below, and shall be used throughout this paper.

Thus, we consider the Hamiltonian of equation (1)
wherein the i, j label sites of a square lattice (that is, only
the Cu spins and the effective interactions between them
are considered) and the exchange interaction integral be-
tween two adjacent sites i and j has the form

Jij =

{
λJ with probability x/2
−J with probability 1− x/2

(2)

where J and λ are positive constants and λ represents
the relative strength of the ferromagnetic and antifer-
romagnetic bonds [19]. The doping level x could be,
say, either the Sr doping level in La2−xSrxCuO4 or
the Ca doping level in Y1−xCaxBa2Cu3O6 (noting that
Neidermayer et al. [20] has shown that the phase diagrams
in these two systems are identical). If we now choose a co-
ordinate system such that linear combinations of x- and
y-directed unit vectors span the lattice, then the Hamil-
tonian can be written explicitly as

H = −1
2

∑
i

∑
â

Ji,i+âSi · Si+â (3)

where i is summed over all lattice sites and â ranges over
±x̂,±ŷ. The equilibrium condition corresponds to that of
zero torque from the local effective field at each lattice
site: ∑

â

Ji,i+âSi × Si+â = 0 . (4)

As is well known, the complication of treating a bipar-
tite lattice (labelling the two sublattices as A and B sites)
can be avoided by transforming the physical problem of
FM bonds in a predominantly AFM background into the
mathematically equivalent problem of AFM bonds in a
FM background. These two pictures can be converted one
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Fig. 1. The lattice site numbering scheme. The frustrating
bond sits between the 0 and 1 sites.

to the other under the simple transformation (AFM →
FM) given below:

Jij 7→ −Jij (5)

Si 7→
{

+Si for i ∈ A
−Si for i ∈ B

.

Lastly, we note that the objects under consideration
are classical spins, and we set their length to be one, scal-
ing J to be JS2. Further, the ground states that we dis-
cuss in this paper all correspond to situations in which
the spins lie in some plane, and thus from now on we re-
strict our formalism to describe planar spins. We denote
the bulk direction of the spins by S∞, and at any lattice
site i there exists a spin Si characterized by the angle ψi
between the spin and the x-axis:

Si = x̂ cosψi + ŷ sinψi ⇒ Si · Sj = cos (ψi − ψj) . (6)

We choose ψi = φi + ψ∞ where ψ∞ is taken to be the
average angle of the spins over the bulk of the material.
That is S∞ = x̂ cosψ∞ + ŷ sinψ∞ so that the angle φi,
defined according to cosφi = Si · S∞, represents the de-
viation of the spin at site i from the bulk direction. The
collection {φi} of the spin distortions at each lattice site
constitutes the spin texture on the lattice.

The numbering scheme for the lattice sites near the
frustrating bond (what from now on we call the bond sites)
is shown in Figure 1.

2.2 Spin deviations of a frustrating bond

In a FM lattice doped with a single AFM bond, the ground
state solution to the spin texture is no longer obvious, and
such a situation is called frustrated. We wish to produce
an accurate analytical solution to this problem in both
the far-field region and close to the frustrating bond. This
will allow us to accurately track the energies of both the
single and many bond problems.

Consider a purely FM lattice frustrated by the intro-
duction of an x-directed AFM bond between the (0, 0)
and (1, 0) lattice sites. We shall denote the spin distortions
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at these sites by φ0 and φ1, respectively. The Hamiltonian
is then written as

H = −J
∑
〈ij〉

′
cos (φi − φj) + λJ cos (φ0 − φ1) (7)

where the prime indicates the omission of the AFM bond
from the summation. It is no longer clear that the trivial
solution φi = 0 represents the ground state since there
may be another solution with π/2 < |φ0 − φ1| < 3π/2
that the takes the system to a lower energy state.

As is well known, considerable information can be
gained from an examination of the dynamical properties
of a linearized system of equations of motion about a pro-
posed equilibrium structure. Here, we briefly outline this
formalism, since it will be important to our later work.
For our purposes, the dynamical behaviour of a lattice of
n independent spins is modeled sufficiently by

φ̈i = −
∑
â

sin (φi − φi+â) i = 1, 2, . . . , n . (8)

Close to the ordered equilibrium state φi = 0, this be-
haviour is governed by the linearized system ẍ = −Mx
where M = Df(0) is the derivative matrix of f evaluated
at the origin and x is related to the spin texture according
to the row vector xT = [φ1, φ2, φ3, . . . , φn].

Solving for the normal modes, and taking note of nega-
tive eigenvalues, the instability of the system to a non FM
ordered ground state can be identified. This technique,
when applied for larger and larger systems, reproduces
the known result [21] that an instability is first reached at
λc = 1 and that there is only one stable spin texture for
all λ exceeding λc.

Unlike such instability analysis, or the Fourier-based
approach of Vanninemus et al. [21], here we wish to de-
velop a continuum theory capable of describing an infinite
lattice including the spins in the immediate neighbourhood
of the frustrating bond. To this end, we proceed as follows.

Let φ be a function of a continuous variable r which
ranges over the entire xy-plane such that φi 7→ φ(ri).
Then, provided that φ is a smooth, slowly varying function
of position, we may approximate the equilibrium condition
for the undoped system (to lowest order [22]) by

∇2φ = 0 . (9)

Now consider a FM lattice frustrated by the intro-
duction of a single x-directed AFM bond. The equilib-
rium spin distortions away from the core of the frustra-
tion are governed by Laplace’s equation. Choose the origin
of the coordinate system centred on the bond, and solve
Laplace’s equation, in polar coordinates, by separation of
variables. The imposition of the appropriate solution sym-
metries [23] yields

φ(r, θ) =
∞∑

m=1,3,5,...

r−mAm cosmθ (10)

where we have adopted the convention that summations
are over odd indices only.

It is clear that for sufficiently large r, the lowest order
term dominates. That is to say, far from the bond the
distortions are dipolar:

φ(r) =
p · r
r2

(11)

where p = A1x̂ or p = A1ŷ. This agrees with the well
known results in the literature (see, e.g., Refs. [21,17]).
Unfortunately this result is inadequate for our purposes,
since we also require the spin distortions near the bond. As
we show below, a previous attempt [24] fails, and thus we
present improved arguments leading to a valid solution
close to and far away from the frustrating bond. Other
work has been unable to solve analytically this part of the
frustrating bond problem [25] (although it is clear that
they are aware of the issues that we have finally solved).

We have written down a general solution to the static
spin texture on the infinite lattice due to a single AFM
bond, and that solution consists of a linear combination
of an infinite number of possible solution modes. However,
since we have shown that the single bond system has only
one stable solution, we expect that any prepared state
will decay into the state of lowest energy given by the
m = 1 solution in equation (10). That is every Am → 0 for
m 6= 1. Nonetheless, we run into the difficulty that the field
equation to which equation (10) is a solution is not strictly
valid at the bond sites. Consequently, we cannot expect
that these solutions will perform well near the bond itself.
Indeed, we find that the purely dipolar solution with 1/r
fall-off fits numerical solutions extremely well (∼0.5 %) up
to three or four lattice sites away from the bond, but that
in the core of the frustration the deviation becomes quite
large. At the bond sites themselves, the error is ∼25%.

We may ask, of course, why such a description does not
suffice if, for the most part, we are interested in the spin
distortions away from the bond. Surely we can tolerate a
small error at a handful of lattice sites? The answer is that
we cannot. Since the spin distortions are most severe in
the immediate vicinity of the bond, the spins in the core
of the frustration are a large contributor to the magnitude
of the total energy stored in the distortions. Thus a proper
calculation of the energy in the system requires that we
model the core correctly. Equally important is that, for
a given solution mode, the local equilibrium condition at
the bond site determines the overall magnitude of the spin
distortions. That is, it fixes the magnitude of the dipole
moment associated with the distortion field. Kovalev and
Bogdan, who suggested a continuum approach for the core
region of this problem [24], fall into precisely this trap
and hence obtain the wrong magnitude for the long range
behaviour for the spin distortions (see below).

It remains to be answered how we might treat the spin
distortions around the bond. Ideally, we would like to treat
the AFM character of the interaction in the core as a small
perturbation on the field equations, but this is not possi-
ble since the continuum formalism is badly behaved at the
origin under the symmetries we have imposed. A second
possibility would be to derive a separate discrete solution
valid in the core and to match it smoothly onto the exte-
rior continuum solution. However, we are inclined to avoid
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such a patch-work approach. Not only is it somewhat in-
elegant, but it also defeats the purpose of introducing the
continuum formalism, namely, to do away with discrete
calculations altogether.

Instead, we make use of the fact that the sets
{cos(mθ)/rm} and {sin(mθ)/rm} are complete (in the
sense that any static spin texture satisfying the symme-
tries [23] specified by a single x- or y-directed bond can
be expanded in one of these bases). Thus, to solve for the
spin distortions everywhere on the lattice is essentially to
fix the values of the coefficients {Am}. In the following,
we attempt to expand the solution to the spin distortions
of an x-directed AFM bond near the origin in the basis
{cos(mθ)/rm}.

To start, we expect that the coefficient A1 must dom-
inate the others since cos(θ)/r is the mode of lowest en-
ergy. Further, convergence at the bond sites requires that
(Am)→ 0 faster than 2−m as m→ ∞. Thus, it is mean-
ingful to treat the expansion φ(n)(r, θ), consisting of the
first n terms of equation (10) as an approximate solution.
We can then apply the local equilibrium condition at n
sites around the bond to determine the n coefficients.

For concreteness, consider the four term expansion

φ(r, θ) = φ(4)(r, θ) = A1
cos θ
r

+A3
cos 3θ
r3

+A5
cos 5θ
r5

+A7
cos 7θ
r7

· (12)

To solve for its four coefficients we require the 9 × 4
transformation matrix

T :=
[
∂φi
∂Aj

]
9×4

=



2 8 32 128

2
5 − 88

125
1312
3125

3712
78 125

6
13 −

72
2197 − 19 104

371 293 − 569 472
62 748 517

2
3

8
27

32
243

128
2187

2
17 −

376
4913

35 872
1 419 857 − 2 566 016

410 338 673

6
25 −

936
15 625 −

7584
9 765 625

9 784 704
6 103 515 625

10
41 −

920
68 921 −

335 200
115 856 201

609 920
194 754 273 881

10
29

520
24 389 − 47 200

20 511 149 −
14 926 720

17 249 876 309

2
5

8
125

32
3125

128
78 125


(13)

Table 1. Spin distortion amplitudes of φ(n)(r, θ) for
n = 1, 2, 3, 4.

n λc A1/φ1 A3/φ1 A5/φ1 A7/φ1

1 17/15 15/22 - - -

2 1.0222 0.6274 −0.0318 - -

3 1.1551 0.3516 −0.1220 0.0398 -

4 1.0113 0.5987 0.0742 0.1960 −0.0552

(generated using a symbolic algebra computer package)
and the matrix

M =


(3− 2λ) −2 0 −1 0 0 0 0 0

−1 5 −1 0 −1 0 0 0 0
0 −1 4 −1 0 −1 0 −1 0
−1 0 −2 4 0 0 0 0 −1

 (14)

of linearized equilibrium conditions at sites 1 through 4.
Defining the row vector aT = [A1, A3, A5, A7] the deter-
mination of {Am} is equivalent to solving the homoge-
neous system of equations MTa = 0. The requirement
that det(MT ) = 0 yields a critical value λc =̇ 1.0113 (very
close to the true value λc = 1) for which

a = [0.5987, 0.0742, 0.1960,−0.0552]× φ1 . (15)

That is to say, the best four term expansion reads

φ(4)(r, θ) = φ(r, θ) = A1
cos θ
r

+A3
cos 3θ
r3

+A5
cos 5θ
r5

+A7
cos 7θ
r7

=
p · r
r2

+
∑

m=3,5,7

Am
cosmθ
rm

(16)

with

p = |p| = A1 = +0.5987φ1, A3 = +0.0742φ1,

A5 = +0.1960φ1, A7 = −0.0552φ1. (17)

The coefficients of φ(n)(r, θ) for n being increased from 1
to 4 are presented in Table 1.

What this calculation provides that the other does
not is the value of the multiplicative factor ∂A1/∂φ1 =
A1/φ1 ∼ 0.6 relating the magnitude of the spin distor-
tions at the bond sites to the magnitude of the dipole
moment associated with the bond itself.

We have shown that the spin distortions are given ev-
erywhere by

φ(r, θ) = A1
cos θ
r

+A3
cos 3θ
r3

+A5
cos 5θ
r5

+ · · · (18)

As we have seen, however, this expression is unwieldy in
that it requires the application of infinitely many local
equilibrium conditions to fully determine the coefficients
{Am}. Even to calculate the coefficients of a finite series
expansion of several terms is computationally expensive.
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Ideally, what we would like to have is a solution depen-
dent on a single parameter whose value is determined by
applying a single boundary condition at the bond itself.
Here we now outline such a method. We find that a simple
assumption on the distribution of modes can provide this
very result.

We proceed by assuming that the spectrum of modes
can be modeled by

A2n+1 = (−1)n
2A1

(2n+ 1)22n+1
(19)

or, in somewhat simplified notation,

Ak = (±)
2A1

k2k
(20)

where the index k is taken to be odd and the sign is taken
alternately positive and negative. This form falls off just
fast enough to make the series converge — besides this
seemingly naive reason, we appeal to its success (described
in detail below) to justify its usage.

Under this assumption

φ(r, θ) = A1
cos θ
r

+A3
cos 3θ
r3

+A5
cos 5θ
r5

+ · · ·

= 2A1

(
cos θ
2r
− 1

3
cos 3θ
(2r)3

+
1
5

cos 5θ
(2r)5

− · · ·
)
. (21)

Now, the magnitude of the dipole moment in terms of
the distortion at the bond site follows immediately from
solving φ(1/2, 0) = φ1 self-consistently. We find that A1 =
2
πφ1 and hence

φ(r, θ) = φ1
4
π

∑
k

(±)
cos kθ
k(2r)k

(22)

since

φ1 = φ(1/2, 0) = φ1
4
π

(
1− 1

3
+

1
5
− · · ·

)
(23)

which is identically equal to φ1. The spin distortions at
the remaining sites in the immediate neighbourhood of
the bond are as follows:

φ2 = φ(
√

5/2, arctan(2)) = 0.295 167 235 3φ1,

φ4 = φ(3/2, 0) = 0.409 665 529 4φ1. (24)

(In fact, one may prove the identity 2φ2 +φ4 ≡ φ1, which
we shall use later on in this paper.)

Notice that as r becomes large, we get

φ(r, θ) → φ1
4
π

cos θ arctan
(

1
2r

)
→ φ1

4
π

cos θ
2r

(25)

= φ1
2
π

cos θ
r

so that the solution retains its familiar long range be-
haviour. That is

φ(r) =
p · r
r2

(26)
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Fig. 2. The distortion magnitude as a function of the frus-
trating AFM bond strength λ. The solid line represents the
prediction of our analytical theory, and the broken line is the
prediction based on the solution of Kovalev and Bogdan [24].
Open squares are numerically generated data points from large
lattices (from 40 × 39 up to 80 × 79 lattices) with converged
numerical solutions for this quantity.

but now with

p = |p| = 2
π
φ1 . (27)

What remains is to determine the parameter φ1. As
promised, the bond furnishes a single boundary condition
in the form of the equilibrium condition applied at either
of the bond sites:

−λ sin(2φ1) + 2 sin(φ1 − φ2) + sin(φ1 − φ4) = 0 . (28)

This is an implicit equation for φ1, and thus for all of the
spin distortions as a function of λ. Its solution is plotted
in Figure 2.

Moreover, the linearized equation gives

−λc2φ1 + 2(φ1 − φ2) + (φ1 − φ4) = 0 (29)

which can be solved explicitly:

λc =
3
2
− 2φ2 + φ4

2φ1
≡ 1 . (30)

That is, our ansatz correctly reproduces the exact critical
value of λc!

A comparison of the solution (22) to numerical simu-
lations is presented in Figure 3; clearly, the agreement is
excellent, providing the most direct support for our ansatz.

2.3 Energy functional

We now calculate the total energy stored in the spin dis-
tortions induced by a single AFM bond. That these distor-
tions are both small and slowly varying in position away
from the core allows us to convert the sum of the en-
ergy contributions into an integral of the energy density
(∇φ)2. A complete derivation is provided in Appendix A,
and we summarize the results below. (Previous attempts
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Fig. 3. The local spin distortions as a function of distance
along the x-axis for an x-directed AFM bond. The solid line
represents the function φ(r, 0) described in the text. Open
squares are converged numerically generated data points from
simulations performed on the same size lattices as in Fig-
ure 2. The broken line is the φ(1)(r, θ) solution of Kovalev and
Bogdan [24] which fails to predict quantitatively the correct
dipole moment of the long-range distortions.

(see, e.g., Ref. [21]) do not properly account for the energy
coming from the core region.)

To begin, the Hamiltonian is approximated to second
order everywhere except across the AFM bond itself:

H ≈ −
∑
〈ij〉

Jij +
1
2
J
∑
〈ij〉

′
(φi − φj)2 − 2λJ sin2 φ1 . (31)

Of course, the term −
∑
Jij represents the total energy

of the system in the absence of spin distortions so that
the energy from the distortions alone is given by the lat-
ter two terms. They, in turn, can be expanded using the
continuum approximation

Edist =
1
4
J
∑
i6=0,1

∑
â

(φi − φi+â)2

+
1
2
J
(

2(φ1 − φ4)2 + 4(φ1 − φ2)2
)
− 2λJ sin2 φ1

≈ J

{
1
2

∫
M

(∇φ)2d2r + (φ1 − φ4)2

+ 2(φ1 − φ2)2 − 2λ sin2 φ1

}
(32)

where M is the xy-plane excluding a small region about
the bond centre.

An explicit evaluation of the energy using the solution
of the previous subsection is presented in Appendix A,
wherein the full effect of the core region is accounted for.
We find

Edist = 2J
(
φ2

1 − λ sin2 φ1

)
. (33)

This result is compared to numerical simulations in Fig-
ure 4, and again, excellent agreement between our numer-
ical solutions and our analytical work is found.

So, now we carry on to the examination of the many-
bond problem, having an excellent solution to both the

E
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y

l
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0

1 2 3 4 5 6

Fig. 4. Energy of a single bond (in units of J) as a function
of the relative AFM bond strength λ. The solid line represents
the prediction of theory, and open squares are converged nu-
merically generated data points from simulations performed on
the same size lattices as in Figure 2.

0 1

s s+1

R

Fig. 5. The geometry and labelling used for two parallel bonds
separated by a vector R.

core and far-field distortion patterns of the single-bond
problem, as well as an accurate energy functional for an
isolated frustrating bond.

3 Interacting frustrating bonds

After dealing with a single bond in isolation, the next step
toward treating a non-zero density of bonds is to deter-
mine how bonds interact with one another. In this section
we consider the problem of two bonds. Previously derived
expressions (see, e.g., Refs. [17,21]) are not sufficiently
accurate for our purposes, since, as discussed at length
above, we need to treat both the core and the far-field
distortions on an equal footing.

Suppose that there is an AFM bond, call it A, between
the 0 and 1 sites. Then suppose that another similarly
directed bond, call it B, is placed between the s and s+ 1
sites and that a vector R making an angle Φ with the
x-axis connects the two bond centres, as in Figure 5. We
expect that the total energy can be parametrized by two
variables

α =
φ1 − φ0

2
β =

φs+1 − φs
2

(34)

that measure the magnitude of the spin distortion across
the bond sites.

For λ − 1 � 1, this magnitude is small. Hence, the
non-interacting energy of a single bond in isolation can
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be approximated by the first few terms of a series expan-
sion of equation (33):

E(φ) = 2J(1− λ)φ2 +
(

2
3
− δ
)
Jλφ4 . (35)

Here δ is a small correction representing the 4th order con-
tribution to energy from the spin distortions which were
neglected in equation (32). The total energy of the two-
bond system can then be written in the form

E2(α, β) = E(α) +E(β) + Jgαβ

= 2J(1− λ)(α2 + β2)

+
(

2
3
− δ
)
Jλ(α4 + β4) + Jgαβ (36)

where g = g(R) is a real-valued function of the separation
and relative orientation of the bonds.

The requirement that the spin texture remain invariant
up to a global sign change under interchange of α and β
reduces the two parameter energy expression (36) to one of
two one parameter expressionsE+

2 orE−2 corresponding to
the symmetric (α = β) and the antisymmetric (α = −β)
state.

Case 1 : φ = α = −β. In this case, the dipoles associ-
ated with the bond are anti-aligned. The total energy is

E−2 (φ) = E2(φ,−φ)

= 4J
(

(1− λ− 1
4
g)φ2 +

1
2

(
2
3
− δ
)
λφ4

)
< 2E(φ) . (37)

Minimization with respect to φ gives

φ =

√
(λ+

1
4
g − 1)/

(
2
3
− δ
)
λ . (38)

This implies that the critical value of λ at which the canted
ground state first appears is lower than it is for a single
AFM bond λc = 1.

Case 2 : φ = α = β. This represents a higher energy
metastable state characterized by aligned dipoles. The en-
ergy for this configuration is

E+
2 (φ) = E2(φ, φ)

= 4J
(

(1− λ+
1
4
g)φ2 +

1
2

(
2
3
− δ
)
λφ4

)
> 2E(φ) (39)

with distortion magnitude

φ =

√
(λ− 1

4
g − 1)/

(
2
3
− δ
)
λ . (40)

Now the critical value of the coupling constant required
for a distorted ground state exceeds λc = 1.

Case 1 is of particular interest since it yields the ground
state energy E0

2 of the two bond system. Further, by re-
expressing that energy in terms of the energy of a single

bond (extracted from Eq. (33) in the limit λ → λc + 0+)
we can determine the energy of interaction between the
two bonds.

E0
2 = −4J

(λ+ 1
4g − 1)2

λ(2/3− δ)

= 2E0 − J (λ− 1)
λ(2/3− δ)g(R)− J 1

8λ(2/3− δ)g(R)2.

(41)

In general, since we expect g to be small, we can write

Eint = −J (λ− 1)
λ(2/3− δ)g(R) . (42)

However, as λ→ 1, we obtain

Eint → −J
1

8λ(2/3− δ)g(R)2, (43)

a weak, long-range interaction with a higher power law, a
consequence of the fact that the dipolar distortions do not
pre-exist in the unperturbed medium at λ = 1. Such an
interaction is analogous to the Van der Waals interaction
between thermally fluctuating dipoles.

The function g expresses the functional dependence of
the interaction energy on the geometrical configuration of
the bonds. We have yet to determine its exact form. All
we can say now is that

lim
R→∞

g(R) = 0 (44)

which simply formalizes our expectation that two bonds
must be non-interacting at infinite separation.

The spin distortions arising from each of the bonds A
and B with dipole moments pA and pB are given by

φA(r) =
pA · r
r2

and φB(r) =
pB · r
r2

· (45)

Recall that these are the solutions (of appropriate sym-
metry) to Laplace’s equation, valid away from the bond
cores.

The linearity of the Laplacian implies that the field
equations admit a superposition principle. Therefore, we
take the total spin distortion at each point to be

φ = φA + φB (46)

where φA and φB are the spin distortions induce by each
bond in the absence of the other.

The energy stored in the net distortion field goes as∫
M2

(∇φ)2d2r =
∫

M2

(
∇(φA + φB)2

)
d2r (47)

=
∫

M2

(∇φA)2d2r +
∫

M2

(∇φB)2d2r

+
∫

M2

∇φA · ∇φBd2r
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Fig. 6. The ground state energy of two parallel bonds, for
λ = 1.1, at various separations along the x-axis, where the
solid line is our prediction and the open squares are converged
numerically generated data points from simulations performed
on the same size lattices as in Figure 2.

where M2 (= R\Dε(0)\Dε(R)) is the xy-plane with disks
removed about the bond centres. The last term in this
expression vanishes identically, which indicates that the
long-range spin distortions of the two bonds do not inter-
act. Rather, the long-range spin distortions of one bond
interact with the non-linear core region of the other. This
observation justifies a rather involved calculation of the in-
teraction energy which we have relegated to Appendix B.

What we find is that Eint has the form of a magnetic
dipole interaction. Further, although in the preceding dis-
cussion we considered only parallel bonds, it is simple to
show that these results hold more generally. Thus, for two
bonds which are parallel or perpendicular we have

Eint = J
2π
R2

{
2(pA · R̂)(pB · R̂)− pA · pB

}
. (48)

Finally, we can work backwards to find g(R). For par-
allel bonds,

Eint = J
2π
R2

{
2(pA · R̂)(pB · R̂)− pA · pB

}
= ±J (λ− 1)

λ(2/3− δ)
8

πR2
cos 2Φ . (49)

That is

g(R) =
8
πR2

cos 2Φ . (50)

We note that the identical calculation for two perpendic-
ular bonds gives

g(R) =
8

πR2
sin 2Φ . (51)

Figures 6 and 7 illustrate the success of the dipole ap-
proximation (i.e. Eq. (48)) in predicting the interaction
energy of two bonds over a range of λ values.

4 Clusters in the cluster spin glass phase

We should ask whether the results we have obtained so
far for the one and two bond problems can be generalized
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Fig. 7. Energy of two parallel bonds, λ = 2, at various separa-
tions along the x-axis, where the solid lines and open squares
are converged numerically generated data points from simula-
tion performed on the same size lattices as in Figure 2. The
upper curve corresponds to the metastable state with dipoles
similarly directed (→→), while the lower energy curve corre-
sponds to oppositely directed dipoles (→←).

to allow us to tackle the problem of a lattice frustrated
by the presence of any number of arbitrarily placed AFM
bonds. It should be clear that, in general, even for rela-
tively few bonds, the induced spin distortions will be very
complicated and the energy surface characterized by many
closely spaced, low-lying states. In such a case one must re-
sort to sophisticated computer algorithms to numerically
generate the ground state spin texture, and the qualitative
analysis of the cluster spin-glass phase from such work has
been analyzed elsewhere [9,26].

In contrast to that work, here we note that there are
configurations of suitably high symmetry for which we can
confidently treat the spins as planar and even solve ana-
lytically for the spin distortions and energies of all the pos-
sible states. The smallest such configuration is the square
cluster of parallel bonds.

By a cluster we imply a collection of bonds arranged
in some local region on the lattice. That collection, call
it C, can be thought of as a set of dipole–position pairs:
{(pα, rα)}α∈C . Given a high symmetry cluster, for which
a spin-planar ground state is justified, the spin distortions
away from the cores of the bonds are given by

φ(r) =
∑
α∈C

pα · (r− rα)
|r− rα|2 (52)

which is the solution (unique for the required symmetry)
to the equation

∇2φ(r) = −2π∇ ·
∑
α∈C

pαδ(r− rα) . (53)

The total interaction energy of the cluster can be written
as the sum of all pairwise interactions

Eint =
∑

α<β∈C

J
2π

|rα − rβ |2
(
2
pα · (rα − rβ) pβ · (rα − rβ)

|rα − rβ |2

− pα · pβ
)
. (54)
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Fig. 8. The ground state spin texture of the 4 × 4 square
cluster for four frustrating bonds. The pink spins are bond
sites at which the frustrating bonds are placed. For clarity, the
spins within the locally ordered cluster are coloured red.
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Fig. 9. Energy of the ground (open squares and lower curve)
and first excited (open diamonds and upper curve) states of the
four frustrating bond arrangement described in the text. The
open squares and diamonds are converged numerically gener-
ated data points from simulations performed on the same size
lattices as in Figure 2.

Thus, for instance, the L×L square cluster of parallel
bonds given by

r1 = (0, 0), r2 = (L, 0), r3 = (0, L),

r4 = (L,L), pα = ±px̂ for α ∈ C = {1, 2, 3, 4}, (55)

has a rather simple interaction energy. There are four pos-
sibilities depending on the the orientation of each dipole:

Eint = −J 8π
L2
p2 , 0 , 0 , +J

8π
L2
p2. (56)

In practice, however, the degeneracy of the middle two
states is lifted by higher order terms in the interaction
energy. Indeed, the splitting observed in numerical simu-
lations enables us to list the four distinguished states in

Fig. 10. Ground state of the six frustrating bonds showing
the domain wall between two clusters of locally ordered spins.
As in Figure 8, the spins of the bond sites are coloured pink,
while the two clusters are coloured red and green, respectively.

order of decreasing energy.∣∣∣∣∣→ →
← ←

∣∣∣∣∣ ,
∣∣∣∣∣→ →
→ ←

∣∣∣∣∣ ,
∣∣∣∣∣→ →
→ →

∣∣∣∣∣ = first excited state,∣∣∣∣∣← →
← →

∣∣∣∣∣ = ground state. (57)

The first excited state consists of four similarly di-
rected dipoles. Destructive interference inside the clus-
ter gives zero net distortion, but outside the cluster the
dipoles add constructively so that the cluster acts like a
single unit with a much stronger moment. This results in
very strong long range spin distortions. Far enough from
the bond, the spin distortions are given by

φ(r) =
4p · r
r2
· (58)

Since the long range spin distortions mediate the interac-
tion between bonds, we expect a cluster of this kind to
strongly couple to other bonds in the lattice.

In the ground state, for which the spin distortion pat-
tern is shown in Figure 8, we have the opposite case: in-
ternally, the dipoles add constructively to give large dis-
tortions whereas outside they cancel to give very small
ones. The absence of long range spin distortions implies
that these clusters can only weakly interact with other
bonds. Most interesting, though, is that the internal spins
are uniformly oriented but differently ordered from those
spins outside the cluster.

Numerical solutions of the energies of this square
cluster are shown in Figure 9. The solid curves are
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our analytical results (apart from a constant times the
single-bond energy (that is straightforward to calculate)),
and provides strong support for their usage. In the ground
state this figure makes clear that the binding energy of the
cluster can be quite large, especially for small cluster sizes.
Further, square clusters tend to settle into states with
strong internal binding and which interact only weakly
with other bonds. That is to say, a square cluster is a
locally ordered domain whose local order parameter Ω̂ is
non-collinear with spins in the rest of the lattice. However,
this behaviour is a strong function of cluster size. This con-
struction, and the energy plot of Figure 9, demonstrates
that such clusterings of spins (in regions that are not too
large) are stable.

The relation of such clusters to stripes, or in the case
of spin modulations, to the physics associated with the
appearance of domain walls, can be demonstrated by con-
sidering the interface between such clusters, and to this
end we have analyzed a six-bond cluster given by

r1 = (0, 0), r2 = (L, 0), r3 = (2L, 0),

r4 = (0, L), r5 = (L,L), r6 = (2L,L),
pα= ±px̂ for α ∈ C = {1, 2, 3, 4, 5, 6}. (59)

Following the above analysis for four bonds, for the six-
bond situation there are 64 possible choices of the dipole
moments’ orientations, and these states have 15 different
energies. The lowest energy configuration corresponds to∣∣∣∣∣→ ← →

→ ← →

∣∣∣∣∣ (60)

and has a dipole-pair interaction energy of
(−103πJ/10) (p/L)2 (which is noticeably lower
than the first excited state, which has an energy of
(−38πJ/10) (p/L)2).

The ground state spin texture for this location of the
six frustrating bonds is shown in Figure 10. From this fig-
ure one can see the important result that this arrangement
of spins is exactly what would expect if each 4 × 4 clus-
ter within the 6-bond cluster was in its respective ground
state. Thus, between these 4 × 4 clusters one obtains a
domain wall, of width one lattice spacing, over which the
local magnetic order parameter is rotated. Numerical evi-
dence suggestive of this type of domain wall was discussed
at length in reference [9] for the case of a random distribu-
tion (and orientation) of a non-zero density of frustrating
spin interactions, and it is clear that the same physics is
at work in these two situations: spin twists.

5 Conclusions

The above formalism has provided a detailed analytical
theory of the spin distortions generated by frustrating
bonds, and of the interactions mediated by the spin back-
ground between them. We have critiqued its validity by
comparing to numerical solutions, and have found excel-
lent agreement. Then, by focusing on highly symmetri-
cal distributions of frustrating bonds, reminiscent of lo-
cal regions of bonds in the multiply doped state, we have

used this theory to verify the existence of locally ordered
magnetic clusters. Most importantly, our work shows that
these clusters are stable. These are the clusters envisioned
to exist in the so-called cluster spin-glass phase [8,9] of
LSCO and Y1−xCaxBa2Cu3O6 [20].

It is to be stressed that it is believed that mobile
holes produce the same kinds of spin distortions that
are produced by the frustrating bonds discussed in this
paper [13,27]. Thus, we believe that our results support
previous suggestions [14–16] that spin twists and distor-
tions are part of the competing interactions that might
lead to rivers of charge appearing as low-energy fluctua-
tions in the doped cuprate systems.

We wish to thank Marc-Henri Julien, John Tranquada, Kazu
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visiting ICTP, Trieste, and he wishes to thank them for their
hospitality and support. This work was supported in part by
the NSERC of Canada.

Appendix A: Single bond energy

The question of the energy stored in the spin distortions
can be answered by expanding the Hamiltonian as follows:

H = −J
∑
〈ij〉

′
cos (φi − φj) + λJ cos (φ1 − φ0)

≈ −J
∑
〈ij〉

′
(

1− 1
2

(φi − φj)2

)
+ λJ cos (2φ1) (A.1)

= −
∑
〈ij〉

Jij +
1
2
J
∑
〈ij〉

′
(φi − φj)2 − 2λJ sin2 φ1.

Of course, the term −
∑
Jij represents the energy in-

trinsic to the lattice. Therefore, the energy from the spin
distortions alone is given by

1
2
J
∑
〈ij〉

′
(φi − φj)2 − 2λJ sin2 φ1 . (A.2)

This in turn can be expanded using the continuum
approximation

Edist ≈ J
{

1
2

∫
M

(∇φ)2d2r + (φ1 − φ4)2

+ 2(φ1 − φ2)2 − 2λ sin2 φ1

}
= J

{
1
2

∫
∂M

φ∇φ · ds + (φ1 − φ4)2

+ 2(φ1 − φ2)2 − 2λ sin2 φ1

}
(A.3)

where M = R\Dε(0) is the xy-plane excluding a
small region about the bond centre. The integral term
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of this expression must be evaluated. Since the core of the
bond occupies a unit disk at the origin, the appropriate
value for ε is 1. Thus, one finds

Edist = J

{
π

2

∑
k

kA2
k + (φ1 − φ4)2

+ 2(φ1 − φ2)2 − 2λ sin2 φ1

}
. (A.4)

Using the results for the mode characterization of equa-
tion (19) gives

∑
k

kA2
k =

∑
k

k

(
2A1

k2k

)2

=
8
π2

ln
(

5
3

)
φ2

1 (A.5)

and the identity 2φ2 + φ4 = φ1 allows us to write

(φ1 − φ4)2 + 2(φ1 − φ2)2 = φ2
1 + 2φ2

2 + φ2
4 . (A.6)

Thus the energy in the spin distortions is

Edist = J

{(
4
π

ln
(

5
3

)
+ 1
)
φ2

1 + 2φ2
2 + φ2

4 − 2λ sin2 φ1

}
(A.7)

which can be evaluated using equation (24) to give

Edist = 2J
(
φ2

1 − λ sin2 φ1

)
. (A.8)

We stress that this expression includes the energy from
the core of the spin distortion field.

Appendix B: Interaction energy

In accordance with Figure 5, we write the spin distortion
at the 0 site from the bond B as

φB
0 =

pB · (R + 1
2 x̂)

|R + 1
2 x̂|2

≈ pB · (R +
1
2
x̂)

1
R2

×
[
1− R · x̂

R2
− 1

4R2

]
. (B.1)

A similar expression can be written down for the other
bond site. Then, by superposition, the difference between
the net distortions at sites 0 and 1 is

(φ0 − φ1) = (φA
0 − φA

1 )− 2
R4

(pB ·R)(pB · x̂)

+
1
R2

pB · x̂ +O
(

1
R2

)
· (B.2)

Then we make use of the relationship between the spin
distortions at the bond sites and the magnitude of the
dipole moment:

(φA
0 + φA

1 ) ≈ 2
π

2
pA . (B.3)

Therefore

(φ0 − φ1)2 = (φA
0 + φA

1 )2 − 8α
R4

(pA ·R)(pB ·R)

+
4α
R2

pA · pB (B.4)

so that

1
2
E = E(pA) +

1
2
J

{
2π
R2

pA · pB − 4π
R4

(pA ·R)(pB ·R)
}

(B.5)

and thus, by symmetry, the total energy is

E = E(pA) +E(pB) + J

{
2π
R2

pA · pB

− 4π
R4

(pA ·R)(pB ·R)
}
. (B.6)

We conclude that the interaction energy is given by

Eint(pA,pB) = J
2π
R2

{
2
R2

(pA ·R)(pB ·R)− pA · pB

}
.

(B.7)

(Repeating the above calculation for two perpendicular
bonds produces the identical result.)
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